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Outline
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» MAX-Phase Ceramics
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Concept of Selt-
Healing Materials
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Self-Healing Ambitions
multiple healing
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Concrete bridge less than 50 years old
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Selt-Healing Bridge in Amsterdam
multiple healing
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Concept of Seli-Healing Materials
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Schematic illustration of the damage development in a
classical material (black line), an ideal self-healing material
(blue line), and a realistic self healing material (red line)
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Design your Self Healing Material

Reqguirements > Polymers: Micro-capsules or
chemical reactions

> Flow to the crack » Asphalt: Induction heating

» Crack filling » Concrete: bacteria

» Bonding to crack faces » Ceramics: 7?7?77

Challenge the future 9




Self-Healing of Oxide Ceramics with
(inter-)metallic Particles

SIC Crack induced
by indentation
ALO, Y
matrix
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Self-Healing of Oxide Ceramics
with (inter-)metallic Particles

Al and Oxygen, small content of Si
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MAX Phase
Ceramics
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M, ,,AX, Phase Ceramics
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M, ,;AX  Phase Ceramics
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M, ,,AX, Phase Ceramics

» Thermodynamically stable
nanolaminates

» Combine favourable
properties of metals &
ceramics

» Good electrical & thermal
conductivity*
» Easily machinable

» High temperature
strength

* Electrical resistivity:  0.2-0.7 pQm (298K)
Thermal conductivity: 12-60 W/mK
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Crack-Healing in MAX Phases
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Selt-Healing in
T1,AlC & Ti;AlC,
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Oxidation induced crack-healing
in Ti;AlC,

proof of principle
e Selective oxidation of Al
2h @ 1100 °C in air

Créck' o

Healing product has similar
properties as matrix
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Autonomous crack healing in MAX
phase ceramics

a. Crack with length of ~7 mm and average width of 5 microns
b. Crack healed after oxidation at 1100 °C in air for 2 h
c. Healed zone: hardness /= 13.3+2.1 GPa and

Young’'s modulus £ = 305+38 GPa

Base materials: A/ =11.74+1.6 GPa and £=2956+15 GPa

== Cracks in Ti;AlC, can be healed via oxidation with healing product
having similar properties
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Strength recovery after oxidation
induced crack healing
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Element distribution in healed crack
region of Ti;AlC,

Crack is healed by
formation of TiO, and Al,O;

= Next, to reduce the amount of TiO, in the healing product, crack
healing of Ti,AIC is studied
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Oxidation behaviour of Ti,AlC

Oxidation in air:

1h @1200° C

16 h @ 1200° C

Ti,AIC SpHm

.

» Oxidation product is mainly a-Al,O;
» Only at the beginning minor amount of TiO, is formed

> Oxide grain size increases with oxidation time: d, = dox/f
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Oxidation behaviour of Ti,AlC

104

Oxidation kinetics can
be described with:
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© Where X is the alumina layer
E s Ea. (9 thickness, &, is a rate

< Measured constant and ¢ is the

oxidation time
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Oxidation time (h)

Primary selective oxidation reaction:

4Ti,AIC + 3x O, = 4Ti,Al;_ C + 2x Al,O5

Fast initial growth and slow subsequent growth of a-Al,O;

due to reduction of fast diffusion paths, i.e. oxide grain growth
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Multiple crack
healing Ti,AlC

(A) A through-thickness crack with a length
of about 2.5 mm and gap of about 8 um
introduced after loading in 3-point
bending (sample width = 4 mm)

(A) Subsequent crack healing of first
fracture at 1200 ° C for 2 hours in air

(A) Crack path after four fracture and
healing cycles, and subsequent fracture

(B) Subsequent crack healing after the fifth
fracture and healing cycle

» Crack runs along original healed crack path
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Fracture thoughness evolution upon
multiple crack healing
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Fracture and Healing cycle

» Fracture toughness decreases due to scars and remnant cracks
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Multiple crack healing

critical damage level
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Multiple crack healing
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» Depends on sample dimensions and applied damage level
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Other Selt-Healing
MAX-Phases?
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Crack healing in Cr,AlC

Cr,AIC crack damage by Knoop indent exposed at @ 1100 ° C for 4 h in air
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Selection of MAX Phases for Self-
Healir ——Sc,0,
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Selection of MAX Phases for Self-
Healing

» Al containing ceramics due to an excellent CTE match, high
oxide melting temperature and strong affinity to react with
oxygen.

» SiO, would be a viable healing agent, though to date only
Ti,SIiC, of the Si containing MAX-phase compounds has been
successfully synthesized.

» Of the M-Oxides ZrO, shows beneficial crack filling properties
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Summary

» Crack healing by selective oxidation demonstrated for Ti;AIC,;
healing products: Al,O5 and TiO,

» Initial fast and subsequent slow formation of healing product;
beneficial for crack healing

» Multiple crack healing demonstrated; evolution of ‘remnant’
crack length depends on size of damage with respect to
component dimensions

» Crack healing and strength recovery of Cr,AIC is possible;
healing product: pure Al,O;

» Identification of potentially self-healing MAX phases underway
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Crack Healing in Ti,AlC
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Second Synchrotron experiment
@ PSI Switzerland

» SLS in situ healing
- Laser furnace
« Chevron notch samples

» ESREF strain analysis
- Comparative study between different

MAX phase i
- Diffraction experiments done right --
> Tomography i
3D non destructive characterisation =R L_ AR | 3

- Limits in resolution and sample size

- Potential to help understanding self healing
behaviour
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Synthesis of MAX Phase Ceramics

Spark Plasma Sintering

* Pulsed DC current
v Short processing time
v" Fast consolidation
v" Even heat distribution
v" High level of control
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Learning curve for new materials

Concept Early Full
Lab Pilot Commercial Commercial
e > <€ >€ > €
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