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Concept of Self-

Healing Materials 
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Self-Healing Ambitions  
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Self-Healing Ambitions  

multiple healing 

Time 

Performance 

original 

improvement 

Multiple self healing 

Drop should be compared 

 to effect of ‘safety factor’ 
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Concrete bridge less than 50 years old 
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Self-Healing Bridge in Amsterdam 

multiple healing 

van Hees, TUD  

Nearly 300 years old 
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Concept of Self-Healing Materials 

Schematic illustration of the damage development in a 
classical material (black line), an ideal self-healing material 
(blue line), and a realistic self healing material (red line)  

S. van der Zwaag (2007) 
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Design your Self Healing Material 

Requirements 
 

 Flow to the crack 

 

 Crack filling 

 

 Bonding to crack faces 

 Polymers: 

 

 Asphalt:  

 

 Concrete: 

 

 Ceramics:  

Micro-capsules or  
chemical reactions 

Induction heating 

bacteria 

??? 
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Self-Healing of Oxide Ceramics with 

(inter-)metallic Particles 

10 μm 

10 µm Al2O3 

Al2O3 
matrix 

SiC Crack induced 
by indentation 
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Self-Healing of Oxide Ceramics 

with (inter-)metallic Particles 

1 μm 

SiO2  by X-ray Micro Analysis  
 (EDS) 1300 ºC in Air for 6 hrs 

  10 μm 

Al and Oxygen, small content of Si 

Al, O & Si 
predomina

nt 

Unhealed crack 

Synthetic Air, 1300C for 18h 
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MAX Phase 

Ceramics 
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Mn+1AXn Phase Ceramics 

Fe 
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A 
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Mn+1AXn Phase Ceramics 
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Mn+1AXn Phase Ceramics 

 Thermodynamically stable 
nanolaminates 

 Combine favourable 
properties of metals & 
ceramics 

 Good electrical & thermal 
conductivity* 

 Easily machinable 

 High temperature 
strength 

* Electrical resistivity:    0.2-0.7 µΩm (298K) 
   Thermal conductivity: 12-60 W/mK 
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Crack-Healing in MAX Phases 

A 

M 

X 

+ O2 
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Self-Healing in 

Ti2AlC & Ti3AlC2 
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Oxidation induced crack-healing  

in Ti3AlC2 

Healing product has similar 
properties as matrix 

Selective oxidation of Al 
2h @ 1100 oC in air 

proof of principle 

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Autonomous crack healing in MAX 

phase ceramics  

a. Crack with length of ~7 mm and average width of 5 microns  

b. Crack healed after oxidation at 1100 ºC in air for 2 h  

c. Healed zone: hardness H = 13.3±2.1 GPa and   

 Young’s modulus E = 305±38 GPa  

 Base materials: H =11.7±1.6 GPa and E =296±15 GPa  

Cracks in Ti3AlC2 can be healed via oxidation with healing product 
having similar properties 

c 

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Strength recovery after oxidation 

induced crack healing 

Oxidized for 2 h in air @ 1200 oC 
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Element distribution in healed crack 

region of Ti3AlC2 

200µm 

Crack is healed by 
formation of TiO2 and Al2O3 

 Next, to reduce the amount of TiO2 in the healing product, crack 

healing of Ti2AlC is studied  

G.M. Song et al. Scripta Mat. 58 (2008) 13-16  
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Oxidation behaviour of Ti2AlC 

 Oxidation product is mainly α-Al2O3 

 Only at the beginning minor amount of TiO2 is formed 

1 h  @ 1200 °C 

16 h  @ 1200 °C 

 Oxide grain size increases with oxidation time:  dt = d0 t

Oxidation in air: 

G.M. Song et al. Mat. at High Temp. 29 (2012)  205-209  
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Oxidation behaviour of Ti2AlC 

Primary selective oxidation reaction: 

4Ti2AlC + 3x O2 = 4Ti2Al1-x C + 2x Al2O3  

Fast initial growth and slow subsequent growth of α-Al2O3 

due to reduction of fast diffusion paths, i.e. oxide grain growth 

X = 2 kn × t
1

4

Oxidation kinetics can 
be described with: 

Where X is the alumina layer 
thickness, kn is a rate 
constant and t is the 

oxidation time 

G.M. Song et al. Mat. at High Temp. 29 (2012)  205-209  
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Multiple crack  

healing Ti2AlC 

(A) A through-thickness crack with a length 

of about 2.5 mm and gap of about 8 µm 

introduced after loading in 3-point 

bending (sample width ≈ 4 mm) 

 

(A) Subsequent  crack healing of first 

fracture at 1200 °C for 2 hours in air 

 

(A) Crack path after four fracture and 

healing cycles, and subsequent fracture 

 

(B) Subsequent crack healing after the fifth 

fracture and healing cycle 

 Crack runs along original healed crack path 
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Fracture thoughness evolution upon 

multiple crack healing 

 Fracture toughness decreases due to scars and remnant cracks 
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Fracture toughness at n cycles: 

‘Remnant’ crack length: 

S.B. Li, J. European Cer. Soc., 32 (2012) 1813-1820  
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Multiple crack healing 
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Multiple crack healing 

  
a

r
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2 (0) - K
Ic

2 (n)‘Remnant’ crack length: 

 Depends on sample dimensions and applied damage level 

• ‘remnant’ crack length 

‘remnant’ crack length 
at lower damage level 
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Other Self-Healing 

MAX-Phases? 
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Other Self-Healing MAX Phases? 
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A A 

100 µm 

A-A 

100 µm 

   1 

   2 

Cr2AlC crack damage by Knoop indent exposed at @ 1100 °C for 4 h in air 

Crack healing in Cr2AlC 

S.B. Li et al. J Am Cer Soc. (2013) 
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Selection of MAX Phases for Self-

Healing  

 ΔG of Oxide formation 

 Diffusivity of constituents 

 Volume expansion during oxidation 

 Mechanical properties  

 Adhesion of healing agent to matrix 
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Selection of MAX Phases for Self-

Healing  

 Al containing ceramics due to an excellent CTE match, high 
oxide melting temperature and strong affinity to react with 
oxygen. 

  

 SiO2 would be a viable healing agent, though to date only 
Ti3SiC2 of the Si containing MAX-phase compounds has been 
successfully synthesized. 

 

 Of the M-Oxides ZrO2 shows beneficial crack filling properties 
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Summary 

 Crack healing by selective oxidation demonstrated for Ti3AlC2; 

healing products: Al2O3 and TiO2 

 

 Initial fast and subsequent slow formation of healing product; 

beneficial for crack healing 

 

 Multiple crack healing demonstrated; evolution of ‘remnant’ 

crack length depends on size of damage with respect to 

component dimensions 

 

 Crack healing and strength recovery of Cr2AlC is possible; 

healing product: pure Al2O3 

 

 Identification of potentially self-healing MAX phases underway 
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Crack Healing in Ti2AlC 
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@ PSI Switzerland 

 SLS in situ healing 

• Laser furnace 

• Chevron notch samples 

 

 ESRF strain analysis 

• Comparative study between different 

MAX phase 

• Diffraction experiments done right 

Second Synchrotron experiment 

 Tomography  

• 3D non destructive characterisation 

• Limits in resolution and sample size 

• Potential to help understanding self healing 

behaviour 
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Synthesis of MAX Phase Ceramics 

Spark Plasma Sintering 

• Pulsed DC current 

 Short processing time 

 Fast consolidation 

 Even heat distribution 

 High level of control 
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Learning curve for new materials 

Source: Ceramic Bulletin 69 (1990) p. 1903 


